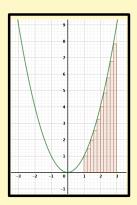
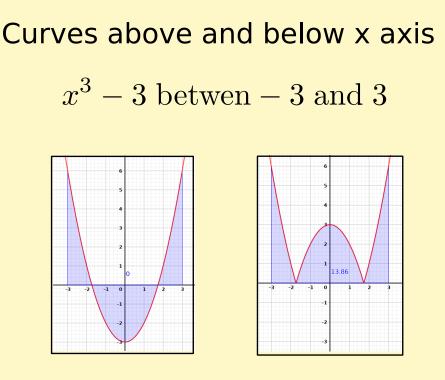

CIET Training

Developing e Content for Teaching and Learning of Mathematics


Calculus


* Limits

Area of a circle - through polygons

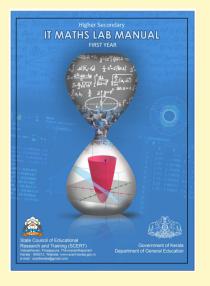
Area under a curve - limit of a sum Lowresum command Uppersum command Definite integral - command

Limit of Functions

Left limit - Right limit

Non existance

epsilon delta definition


 $\lim_{x \to 0} \frac{\sin x}{x} = 1$

 x^2 , $\sin x^2$, $\sin^2 x$, ...


Taylor expansion of sin(x)

Graphs of
$$\sin \frac{1}{x}$$
, $x \sin \frac{1}{x}$,...

IT Maths Lab - SCERT Kerala

scert.kerala.gov.in

Activity 31.3 Visualisation of Problems - 3

1. Find the maximum area of an isosceles triangle inscribed in the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ with its vertex at one end of the major axis. Verify your answer by constructing a GeoGebra applet.

Procedure

- Taking OP = x, find PA and PQ in terms of x (use the equation of the ellipse)
- Find the area of the triangle as a function of x (say f(x))
 - Plot the graphs of f(x) and f'(x) and find the maximum as we did in the previous exapples.

Verification :

- Draw the ellipse and plot the point A(4,0)
- Plot a point B on the ellipse and plot another point $C(\boldsymbol{x}(B),-\boldsymbol{y}(B))$
- Using Polygon tool draw the triangle ABC and find its area.

* Derivatives

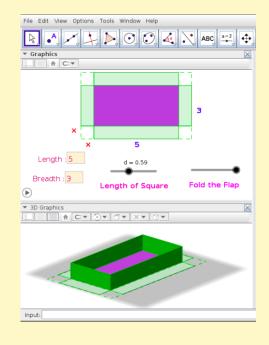
Tangent to a curve - meaning - graph of sin(x) - limiting case of secant

Visualisation - Slop of tangent

Non differentiability - sharp turn

* Applications of derivatives

Maxima and Minima


$$x^{2} - 6x + 10$$

$$9x^{2} + 12x + 2$$

$$2x^{3} - 15x^{2} + 36x + 1$$

* Visualisation of Problems

An open topped box is to be constructed by removing equal squares from each corner of a 3 metre by 8 metre rectangular sheet of aluminium and folding up the sides. Find the volume of the largest such box using derivatives. Verify your answer using the given applet

INPUT COMMANDS

$$x^2: x^2$$

Lower sum : LowerSum(f, 1, 3, n) Upper sum : UpperSum(f, 1, 3, n)

Definite Integral : Integral(f,1,3)

 $If(x <= 2, x^2, 2x + 1)$

TaylorPolynomial(sin(x), 0, n)