CIET Training

Developing e Content for Teaching and Learning of Mathematics

Calculus

* Limits

Area of a circle - through polygons

Area under a curve - limit of a sum Lowresum command Uppersum command Definite integral - command

Curves above and below x axis

$$
x^{3}-3 \text { betwen }-3 \text { and } 3
$$

Limit of Functions

Left limit - Right limit
Non existance
epsilon delta definition

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

$x^{2}, \sin x^{2}, \sin ^{2} x, \ldots$

Taylor expansion of $\sin (x)$

Graphs of $\sin \frac{1}{x}, x \sin \frac{1}{x}, \ldots$

scert.kerala.gov.in

Activity 31.3 Visualisation of Problems - 3

1. Find the maximum area of an isosceles triangle inscribed in the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ with its vertex at one end of the major axis. Verify your answer by constructing a GeoGebra applet.

Procedure

- Taking $O P=x$, find $P A$ and $P Q$ in terms of x (use the equation of the ellipse)
- Find the area of the triangle as a function of x (say $f(x)$)

2. Plot the graphs of $f(x)$ and $f^{\prime}(x)$ and find the maximum as we did in the previous exapmles.

Verification :

- Draw the ellipse and plot the point $A(4,0)$
- Plot a point B on the ellipse and plot another point $C(x(B),-y(B))$
- Using Polygon tool draw the triangle $A B C$ and find its area.

0
Change the position of B and find the maximum area of the triangle.

* Derivatives

Tangent to a curve - meaning - graph of $\sin (x)$ - limiting case of secant

Visualisation - Slop of tangent
Non differentiability - sharp turn

* Applications of derivatives

Maxima and Minima

$$
\begin{aligned}
& x^{2}-6 x+10 \\
& 9 x^{2}+12 x+2 \\
& 2 x^{3}-15 x^{2}+36 x+1
\end{aligned}
$$

* Visualisation of Problems

An open topped box is to be constructed by removing equal squares from each corner of a 3 metre by 8 metre rectangular sheet of aluminium and folding up the sides. Find the volume of the largest such box using derivatives. Verify your answer using the given applet

INPUT COMMANDS

$x^{2}: \mathrm{x}^{\wedge} 2$

Lower sum : LowerSum(f, 1, 3, n)

Upper sum : UpperSum(f, 1, 3, n)

Definite Integral: Integral(f,1,3)

$$
\operatorname{lf}\left(x<=2, x^{\wedge} 2,2 x+1\right)
$$

